Биотехнологии 205

DOI: 10.25205/978-5-4437-1691-6-101

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДОБАВОК ЛИЧИНОК HERMETIA ILLUCENS И ПОДСОЛНЕЧНОГО МАСЛА К ПИТАТЕЛЬНОЙ СРЕДЕ НА РОСТ БИОМАССЫ ГРИБОВ РОДА CORDYCEPS

STUDY OF THE EFFECT OF ADDING HERMETIA ILLUCENS LARVAE AND SUNFLOWER OIL TO THE NUTRIENT MEDIUM ON THE GROWTH OF BIOMASS OF CORDYCEPS FUNGI

Г. И. Сараев¹, Р. Д. Марченко^{1,2}, И. С. Кускова¹

¹ Томский государственный университет ² OOO «Артлайф», Томск

G. I. Saraev¹, R. D. Marchenko^{1,2}, I. S. Kuskova¹

¹Tomsk State University ²Artlife, LLC, Tomsk

⊠ sgi-agrobiotek@mail.tsu.ru

Аннотация

Глубинное культивирование является одним из методов получения биомассы грибов рода *Cordyceps* для нужд промышленности биологически активных веществ. Определяющую роль при этом имеет подбор оптимальных условий культивирования. В настоящей работе рассмотрено влияние добавок в питательную среду для культивирования *Ophiocordyceps sinensis* и *Cordyceps militaris* подсолнечного масла и личинок мухи *Hermetia illucens* на рост биомассы грибов.

Abstract

Submerged cultivation is one of the methods for obtaining biomass of *Cordyceps* fungi for the needs of the biologically active substances industry. The choice of optimal cultivation conditions plays a decisive role in this case. This paper examines the effect of adding sunflower oil and *Hermetia illucens* fly larvae to the nutrient medium for cultivating *Ophiocordyceps sinensis* and *Cordyceps militaris* on the growth of fungal biomass.

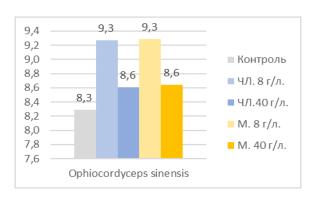
Введение

Метаболиты грибов *Ophiocordyceps sinensis* и *Cordyceps militaris* (OS и CM) представляют интерес для производства биологически активных добавок, способствующих лечению различных опухолей, обладающих антиоксидантным эффектом и положительно влияющих на иммунную систему и репродуктивную функцию человека [1, 2].

Добавление в питательную среду СМ растительных масел и насекомых приводило к увеличению содержания кордицепина — пуринового алкалоида, обладающего высоким иммуностимулирующим и противораковым потенциалом [3, 4].

Распоряжением правительства Российской федерации от 10.10.2023 № 2761-р продукция, полученная из *Hermetia illucens* (HI), разрешена для использования в качестве корма сельскохозяйственных животных [5]. Можно ожидать использования продукции из НІ в пищевой промышленности.

Цель работы — изучение влияния добавок в питательные среды OS и CM подсолнечного масла и личинок HI на рост биомассы грибов.

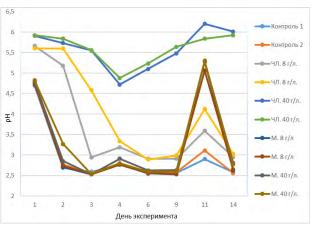

Объекты и методы

Исследовались культуры OS и смешанные культуры CM и OS из коллекции OOO «Артлайф» (Томск).

Жидкие культуры грибов выращивали 14 суток в колбах с доступом кислорода в диапазоне температур 17–25 °C на используемых в ООО «Артлайф» питательных средах. Подсолнечное масло и молотые личинки НІ добавлялись в концентрации 8 и 40 г/л. Контролем служила питательная среда без добавок. Питательные среды стерилизовали в автоклаве.

Ежедневно осуществлялся отбор проб: измерялись pH, титруемая кислотность, проводилась микроскопия отсутствия контаминаций. По окончании эксперимента мицелий отделяли от культуральной жидкости центрифугированием при 10 000 об/мин в течение 10 мин.

206 Раздел II


Puc. 1. Содержание мицелия OS в жидкой культуре

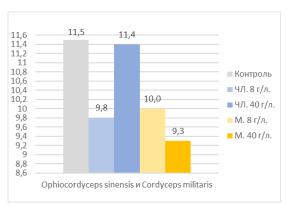
Результаты

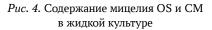
В культуре OS наибольшее содержание мицелия по массе зафиксировано в пробах с добавками подсолнечного масла и личинок НІ в концентрациях 8 г/л и составило 9,3 % в обоих случаях (среднее значение для двух повторений) при контроле 8,3 %. Прирост мицелия при добавках в концентрациях 40 г/л в обоих случаях составил 8,6 % (рис. 1).

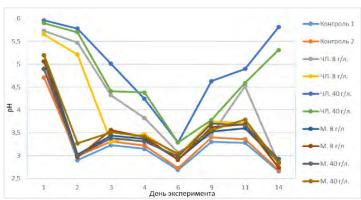
Меньший прирост мицелия при большей концентрации добавок, вероятно, связан с препятствующей доступу кислорода плотной поверхностной пленкой и агрессивным для жизненного цикла гриба рН для образцов с подсолнечным маслом и личинками НІ соответственно (рис. 2).

Снижение значения титруемой кислотности может указывать на прекращение активной фазы роста гриба к 14-му дню эксперимента (рис. 3).

22 Контроль 2 20 19 —ЧЛ. 8 г/л. **-**ЧЛ. 8 г/л. **–** ЧЛ. 40 г/л. **-**ЧЛ. 40 г/л. Гитруемая М. 8 г/л. М. 40 г/л. М. 40 г/л. ⁴ День эксперимента


-Контроль 1


Puc. 2. График изменения рН OS


Puc. 3. График изменения титруемой кислотности OS

В смешанной культуре CM и OS зафиксирован меньший прирост мицелия по сравнению с контрольным во всех пробах, кроме образцов с добавлением личинок НІ в концентрации 40 г/л (рис. 4).

Во всех пробах зафиксированы более высокие показатели рН для образцов с добавлением личинок НІ в концентрации 40 г/л (рис. 2, 5). Для лучшей интерпретации полученных результатов необходимо провести исследования с культурой СМ, отделенной от культуры OS, изучить взаимное влияния метаболитов OS и СМ.

Puc. 5. График изменения рН OS и CM

Снижение значения титруемой кислотности может указывать на прекращение активной фазы роста гриба к 14-му дню эксперимента (рис. 6).

Биотехнологии 207

Рис. 6. График изменения титруемой кислотности OS и CM

Заключение

Изучено влияние добавок в питательную среду OS и CM подсолнечного масла и личинок HI на рост биомассы грибов. Установлено, что при добавлении в питательную среду OS подсолнечного масла и личинок HI в концентрациях 8 г/л прирост мицелия существенно выше, чем у контрольных проб.

Имеются другие исследования, согласно которым продукция кордицепина не зависит от накопленной биомассы мицелия [6]. Ведется работа по изучению влияния добавок на продукцию кордицепина.

Литература

- 1. Автономова А. В., Краснопольская Л. М., Шуктуева М. И. и др. Оценка противоопухолевого действия погруженной культуры *Ophiocordyceps sinensis* и *Cordyceps militaris* // Антибиотики и химиотерапия. 2015. Т. 60. С. 7–8.
- 2. Chen Y.-C. et al. Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review // J. Food Drug Anal. 2017. Vol. 25, No. 1. P. 197–205.
- 3. Tang J., Qian Z., Wu, H. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source // Bioresour. Technol. 2018. Vol. 268. P. 60–67.
- 4. Turk A., Abdelhamid M.A.A. et al. Cordyceps mushroom with increased cordycepin content by the cultivation on edible insects // Front. Microbiol. 2022. Vol. 13.
 - 5. Распоряжение правительства Российской федерации от 10.10.2023 № 2761-р. URL: http://publication.pravo.gov.ru
- 6. Крюков В.Ю., Кухаренко А.Е. и др. Продукция кордицепина и аденозина в мицелии и культуральной жидкости. изолятов Cordyceps militaris // Микология и фитопатология. 2012. Т. 46, № 6.