DOI: 10.25205/978-5-4437-1691-6-139

КИНЕТИКА И МЕХАНИЗМЫ ОКСИДАТИВНОГО ГЕМОЛИЗА ЭРИТРОЦИТОВ ПОД ДЕЙСТВИЕМ РАДИКАЛЬНЫХ ИНИЦИАТОРОВ ПЕРОКСИДНОГО ОКИСЛЕНИЯ ЛИПИДОВ °

KITETICS AND MECHANISMS OF OXIDATIVE HEMOLYSIS OF ERYTHROCYTES UNDER THE INFLUENCE OF RADICAL INITIATORS OF LIPID PEROXIDATION

Н. А. Дубенская 2 , Е. М. Соколова 1 , Б. Л. Психа 1 , Н. И. Нешев 1

 1 Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка 2 Московский государственный университет им. М.В. Ломоносова

N.A. Dubenskaia², E.M. Sokolova¹, B.L. Psikha¹, N.I. Neshev¹

¹Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka ²Lomonosov Moscow State University

⊠nina2606nina@yandex.ru

Аннотация

В широком диапазоне концентраций изучена кинетика оксидативного гемолиза 0,2%-й суспензии эритроцитов мыши под действием радикалообразующих инициаторов пероксидной природы: гидропероксида кумола (Cumyl-OOH), пероксида водорода (HP), *трет*-бутилгидропероксида (*t*-BuOOH) и 2,2'-азобис (2-амидинопропан) дигидрохлорид (ААРН), относящегося к классу диазосоединений.

Abstract

The kinetics of oxidative hemolysis of a 0.2 % suspension of mouse erythrocytes under the influence of radical-forming initiators of a peroxide nature: cumene hydroperoxide (Cumyl-OOH), hydrogen peroxide (HP), tert-butyl hydroperoxide (*t*-BuOOH) and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), belonging to the diazo compounds family.

Поиск и исследование веществ, обладающих антиоксидантными свойствами, а также последующая разработка на их основе фармакологических препаратов — по-прежнему базовые направления химической биологии и медицинской химии. Это обусловливает актуальность и практическую значимость разработки биологических моделей, на которых осуществляется тестирование новых соединений на антиоксидантную активность. Широко используются для этой цели модели индуцированного оксидативного гемолиза эритроцитов. В качестве его индукторов выступают известные в химии полимеры азо- и пероксидные инициаторы радикальной полимеризации.

Нами изучена кинетика оксидативного гемолиза 0,2%-й суспензии эритроцитов мыши под действием 2,2′-азобис(2-амидинопропан) дигидрохлорида (ААРН), пероксида водорода (НР), *тидро*пероксида кумола (Ситуl-ООН). Гемолитическую активность инициаторов характеризовали длительностью периода индукции гемолиза.

В то же время кинетические закономерности гемолиза под действием исследуемых соединений существенно различались. В случае ААРН величина периода индукции гемолиза убывала обратно пропорционально квадратному корню от концентрации инициатора, что согласуется с классической теорией радикально-цепного окисления углеводородов. В случае t-ВиООН период индукции гемолиза убывал медленнее, проявляя тенденцию к насыщению. Данная зависимость хорошо аппроксимировалась биэкспоненциальной функцией вида $y = A_1 e^{-k_1 C} + A_2 e^{k_2 C} + y_0$, где k_1 и k_2 равны $2 \cdot 10^{-2}$ и $65 \cdot 10^{-2}$ соответственно. Это может указывать на возможное присутствие двух различных факторов, влияющих на исследуемую систему.

 ${
m HP}$ и Cumyl-OOH вызывали гемолитические эффекты примерно в том же диапазоне концентраций, что и t-BuOOH, однако сквозную концентрационную зависимость в этом случае получить не удается.

[°] Работа выполнена в рамках государственного задания № 12402500019-2. © Н. А. Дубенская, Е. М. Соколова, Б. Л. Психа, Н. И. Нешев, 2024

284 Pаздел III

Полученные в работе результаты согласуются с представлением, что в случае с ААРН основной радикальной формой является образующийся при разложении ААРН в водной среде пероксидный радикал, который атакует мембрану клетки снаружи. В то же время под действием пероксидов оксидативные процессы вначале инициируются внутри клетки с участием гемоглобина, после чего первичные радикальные формы атакуют мембрану изнутри, что в целом делает систему более сложной. Следовательно, в эритроцитарной модели индуцированного оксидативного гемолиза эритроцитов в качестве инициатора перекисного окисления липидов предпочтительнее использовать азогенератор пероксидных радикалов — ААРН.